

# ValveGuard-Net: A VAE-LSTM Architecture for Early Fault Signatures, Time-to-Failure Projection, and Root Cause Pathway Analysis

Muhammad Usama, Mahnoor

## Abstract

Industrial valve failures in process control systems can lead to catastrophic consequences including production losses, safety hazards, and environmental damage. This paper presents a novel predictive maintenance framework combining Variational Autoencoder-Long Short-Term Memory (VAE-LSTM) networks for real-time anomaly detection with advanced time-to-failure (TTF) prediction capabilities. Our approach leverages multivariate time series data from temperature indicator controllers (TIC) to detect subtle degradation patterns before critical failures occur. The VAE component learns a probabilistic latent representation of normal valve behavior, while LSTM layers capture temporal dependencies in sequential operational data. We introduce a cubic polynomial degradation model that tracks reconstruction error evolution to predict remaining useful life with 95% confidence intervals. The framework achieves 98.7% anomaly detection accuracy with a false positive rate below 5%, detecting anomalies on average 47.3 minutes before failure events. Additionally, we implement feature-wise reconstruction error analysis for root cause identification, revealing that process variable (PV) deviations contribute 62% to detected anomalies. Experimental validation on industrial valve datasets containing 7,023 normal operation sequences and 1,782 test sequences with known failures demonstrates the framework's superiority over traditional threshold-based methods, reducing unplanned downtime by an estimated 73% and maintenance costs by 45%. The proposed system provides interpretable diagnostics through contribution analysis, enabling operators to take targeted corrective actions. This work advances the state-of-the-art in industrial predictive maintenance by integrating probabilistic deep learning, temporal modeling, and prognostic analytics into a unified framework suitable for real-time deployment in Industry 4.0 environments.

**Index Terms**—Predictive Maintenance, Variational Autoencoder, LSTM, Anomaly Detection, Time-to-Failure, Industrial Valves, Deep Learning, Reconstruction Error, Root Cause Analysis, Industry 4.0